A Harnack’s inequality and Hölder continuity for solutions of mixed type evolution equations
نویسندگان
چکیده
منابع مشابه
Hölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولErratum: On the Hölder Continuity of Solutions of a Certain System Related to Maxwell's Equations
We study the system curl (a(x) curlu) = 0, divu = 0 with a bounded measurable coefficient a(x). The main result of this paper is the Hölder continuity of weak solutions of the system above. As an application, we prove the Cα regularity of weak solutions of the Maxwell’s equations in a quasi-stationary electromagnetic field.
متن کاملHölder continuity of solutions to the Monge - Ampère equations on compact Kähler manifolds
X ω = 1. An upper semicontinuous function φ : X → [−∞,+∞) is called ω-plurisubharmonic (ω-psh) if φ ∈ L(X) and ωφ := ω + dd φ ≥ 0. By PSH(X,ω) (resp. PSH(X,ω)) we denote the set of ω-psh (resp. negative ω-psh) functions on X . The complex Monge-Ampère equation ω u = fω n was solved for smooth positive f in the fundamental work of S. T. Yau (see [Yau]). Later S. Kolodziej showed that there exist...
متن کاملA Poincaré-type Inequality for Solutions of Elliptic Differential Equations
A sharpened version of the Poincaré inequality is shown to hold for solutions of a large class of second order elliptic equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti Lincei - Matematica e Applicazioni
سال: 2015
ISSN: 1120-6330
DOI: 10.4171/rlm/711